Performance monitoring and optimization
The Necessity of Performance Monitoring
The complexity of modern web applications continues to increase, and performance issues directly impact user experience. As a data visualization tool, ECharts particularly requires attention to rendering performance in scenarios involving large datasets. By monitoring key metrics, issues such as lag and memory leaks can be promptly identified and resolved.
Key Performance Metrics
1. First Render Time
Measures the time taken from chart initialization to completion of rendering. Precise data can be obtained using the performance
API:
const start = performance.now();
myChart.setOption(option);
const end = performance.now();
console.log(`First render time: ${end - start}ms`);
2. Frame Rate (FPS)
Monitor rendering frame rate using requestAnimationFrame
:
let lastTime = performance.now();
let frameCount = 0;
function checkFPS() {
const now = performance.now();
frameCount++;
if (now > lastTime + 1000) {
const fps = Math.round((frameCount * 1000) / (now - lastTime));
console.log(`Current FPS: ${fps}`);
frameCount = 0;
lastTime = now;
}
requestAnimationFrame(checkFPS);
}
checkFPS();
3. Memory Usage
Obtain memory data via window.performance.memory
(Chrome):
setInterval(() => {
if (window.performance && performance.memory) {
console.log(`Used heap size: ${performance.memory.usedJSHeapSize / 1024 / 1024}MB`);
}
}, 5000);
Common Performance Issues and Optimizations
Lag in Large Dataset Rendering
When data points exceed 10,000, the default rendering method will exhibit noticeable lag. Solutions:
- Use sampling to reduce data volume
- Enable progressive rendering
option = {
series: [{
type: 'line',
progressive: 1000, // Render 1000 points at a time
progressiveThreshold: 5000 // Enable progressive rendering when data exceeds 5000 points
}]
};
Animation Performance Optimization
Complex animations may cause frame rate drops. Recommendations:
- Reduce the number of simultaneous animations
- Use simpler easing functions
- Disable unnecessary animations
option = {
animationDuration: 1000, // Appropriately reduce animation duration
animationEasing: 'linear' // Use more performant easing
};
Memory Leak Handling
Common memory leak scenarios:
- Undestroyed chart instances
- Unremoved event listeners
Best practices:
// Destroy chart
function destroyChart() {
myChart.dispose();
myChart = null;
}
// Event listener management
const handler = function() { /*...*/ };
myChart.on('click', handler);
// When removing
myChart.off('click', handler);
Advanced Optimization Techniques
WebWorker Data Processing
Move data computation to WebWorker:
// main.js
const worker = new Worker('data-worker.js');
worker.postMessage(rawData);
worker.onmessage = function(e) {
myChart.setOption({
series: [{
data: e.data
}]
});
};
// data-worker.js
self.onmessage = function(e) {
const processedData = heavyCompute(e.data);
self.postMessage(processedData);
};
Canvas Rendering Optimization
Adjust rendering parameters to improve performance:
myChart.getZr().painter.getLayer().config = {
motionBlur: false, // Disable motion blur
lastFrameAlpha: 0.7 // Reduce repaint transparency
};
On-Demand Rendering
Implement rendering only for visible areas within the viewport:
option = {
dataZoom: [{
type: 'inside'
}],
series: [{
type: 'line',
large: true, // Enable large data mode
largeThreshold: 2000 // Data volume threshold
}]
};
Performance Monitoring Tool Integration
Integration with Sentry
Capture runtime errors and performance data:
import * as Sentry from '@sentry/browser';
Sentry.init({
dsn: 'YOUR_DSN',
integrations: [new Sentry.Integrations.ECharts()],
tracesSampleRate: 1.0
});
try {
myChart.setOption(complexOption);
} catch (error) {
Sentry.captureException(error);
}
Custom Performance Panel
Build a real-time monitoring interface:
function createPerformancePanel() {
const panel = document.createElement('div');
document.body.appendChild(panel);
setInterval(() => {
const fps = getCurrentFPS();
const mem = performance.memory.usedJSHeapSize;
panel.innerHTML = `
FPS: ${fps}<br>
Memory: ${(mem / 1024 / 1024).toFixed(2)}MB
`;
}, 1000);
}
Real-World Case Studies
Stock Candlestick Chart Optimization
Handling 100,000 candlestick data points:
option = {
dataset: {
source: rawData,
dimensions: ['date', 'open', 'close', 'low', 'high']
},
dataZoom: [{
type: 'slider',
xAxisIndex: 0,
filterMode: 'filter' // Filter mode reduces rendered data
}],
series: [{
type: 'candlestick',
progressive: 2000,
encode: {
x: 'date',
y: ['open', 'close', 'low', 'high']
}
}]
};
Geographic Heatmap Optimization
Rendering solution for millions of data points:
option = {
visualMap: {
min: 0,
max: 100,
calculable: true
},
series: [{
type: 'heatmap',
coordinateSystem: 'geo',
blurSize: 5,
pointSize: 3,
data: heatData,
progressive: 10000,
itemStyle: {
opacity: 0.8
}
}]
};
Continuous Performance Monitoring
Establish automated monitoring processes:
// Performance data reporting
function reportPerformance() {
const metrics = {
fps: getAverageFPS(),
renderTime: getRenderTime(),
memory: performance.memory.usedJSHeapSize
};
fetch('/api/performance', {
method: 'POST',
body: JSON.stringify(metrics)
});
}
// Scheduled data collection
setInterval(reportPerformance, 60000);
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn