Geographic data processing
Basic Concepts of Geographic Data Processing
Geographic data processing refers to the entire process of collecting, storing, analyzing, and visualizing spatial data. In web development, ECharts, as a powerful visualization library, provides robust capabilities for geographic data processing. Geographic data typically includes latitude and longitude coordinates, administrative boundaries, terrain elevation, and other information, which can be sourced from public datasets or professional GIS systems.
Common geographic data formats include:
- GeoJSON: A JSON-based format for geospatial data exchange
- TopoJSON: An extension of GeoJSON that reduces redundancy using topological structures
- Shapefile: A spatial data format developed by ESRI
- KML: A markup language format used by Google Earth
// Example GeoJSON data structure
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": {
"name": "Beijing"
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[116.05, 39.55],
[116.75, 39.55],
[116.75, 40.15],
[116.05, 40.15],
[116.05, 39.55]
]
]
}
}
]
}
Geographic Data Components in ECharts
ECharts offers various geographic data-related components, with the most core being the geo
component and the map
series. The geo
component is used to create geographic coordinate systems and supports multiple projection methods, while the map
series is specifically designed for drawing maps.
Key configuration options for the geo
component include:
map
: Specifies the map type, such as'china'
for a map of Chinaroam
: Enables zooming and panning interactionscenter
: Coordinates of the map's center pointzoom
: Initial zoom levelregions
: Customizes region styles
option = {
geo: {
map: 'china',
roam: true,
center: [104.114129, 37.550339],
zoom: 1.2,
regions: [{
name: 'Guangdong',
itemStyle: {
areaColor: '#ff0000'
}
}]
}
};
Types of Geographic Data Visualization
ECharts supports various forms of geographic data visualization, each suited to different analytical scenarios:
- Heatmap: Displays data density distribution
series: [{
type: 'heatmap',
coordinateSystem: 'geo',
data: [
[116.40, 39.90, 100],
[121.47, 31.23, 80],
// More data points...
],
pointSize: 10,
blurSize: 15
}]
- Scatter Plot: Marks specific geographic locations
series: [{
type: 'scatter',
coordinateSystem: 'geo',
symbolSize: 12,
data: [
{name: 'Shanghai', value: [121.47, 31.23, 100]},
{name: 'Beijing', value: [116.40, 39.90, 80]}
],
label: {
show: true,
formatter: '{b}'
}
}]
- Flow Map: Shows geographic paths and directions
series: [{
type: 'lines',
coordinateSystem: 'geo',
data: [{
coords: [[116.40, 39.90], [121.47, 31.23]],
lineStyle: {
width: 2,
curveness: 0.2
}
}],
effect: {
show: true,
period: 6,
trailLength: 0.7,
symbol: 'arrow'
}
}]
Custom Map Implementation
When built-in maps are insufficient, custom maps can be registered. This requires preparing GeoJSON-formatted data and registering it via the ECharts API.
Implementation steps:
- Obtain GeoJSON data
- Register the map
- Configure chart options
// 1. Load GeoJSON data
$.get('custom-map.json', function(geoJson) {
// 2. Register the map
echarts.registerMap('myMap', geoJson);
// 3. Configure the chart
var option = {
series: [{
type: 'map',
map: 'myMap',
label: {
show: true
},
data: [
{name: 'Region A', value: 100},
{name: 'Region B', value: 200}
]
}]
};
myChart.setOption(option);
});
Geographic Data Interaction Features
ECharts provides rich interactive features for geographic data to enhance user experience:
- Region Highlighting: Emphasizes regions on hover
series: [{
type: 'map',
map: 'china',
emphasis: {
label: {
color: '#fff'
},
itemStyle: {
areaColor: '#389BB7'
}
}
}]
- Data Filtering: Achieved via the
visualMap
component
visualMap: {
min: 0,
max: 100,
text: ['High', 'Low'],
realtime: false,
calculable: true,
inRange: {
color: ['#50a3ba', '#eac736', '#d94e5d']
}
}
- Linked Analysis: Multi-chart linkage
// Initialize two chart instances
var chart1 = echarts.init(document.getElementById('main1'));
var chart2 = echarts.init(document.getElementById('main2'));
// Set up linkage
chart1.on('click', function(params) {
// Filter data in the second chart based on the clicked region
chart2.dispatchAction({
type: 'highlight',
name: params.name
});
});
Performance Optimization Strategies
Performance optimization is crucial when handling large-scale geographic data:
- Data Simplification: Use simplified TopoJSON
// Converting raw GeoJSON to TopoJSON can reduce size by 30%-80%
topojson.presimplify(geojson);
topojson.simplify(geojson, 0.05);
- Layered Rendering: Load data in chunks
// First load provincial boundaries
echarts.registerMap('china-province', provinceGeoJson);
// Load city-level data only when zoomed in
myChart.on('georoam', function(params) {
if(params.zoom > 3) {
loadCityData();
}
});
- WebWorker Processing: Offload complex calculations to a Worker
// Main thread
const worker = new Worker('geo-data-worker.js');
worker.postMessage({type: 'process', data: rawData});
// Worker thread
self.onmessage = function(e) {
if(e.data.type === 'process') {
const result = heavyProcessing(e.data.data);
self.postMessage(result);
}
};
Geographic Data Analysis Case Studies
Practical examples demonstrating ECharts' geographic data processing capabilities:
Case 1: National Air Quality Monitoring
// Data preprocessing
function processAQIData(rawData) {
return rawData.map(item => {
return {
name: item.city,
value: [...item.coord, item.aqi],
aqi: item.aqi
};
});
}
// Visualization configuration
option = {
visualMap: {
min: 0,
max: 300,
calculable: true,
inRange: {
color: ['#50a3ba', '#eac736', '#d94e5d']
}
},
series: [{
type: 'scatter',
coordinateSystem: 'geo',
symbolSize: function(val) {
return Math.sqrt(val[2]) * 2;
},
data: processAQIData(rawData)
}]
};
Case 2: Inter-City Population Migration Analysis
// Process migration data
function processMigrationData(raw) {
const nodes = raw.nodes.map(node => {
return {
name: node.name,
value: node.value,
coord: node.coord
};
});
const links = raw.links.map(link => {
return {
from: link.source,
to: link.target,
value: link.value
};
});
return {nodes, links};
}
// Visualization configuration
option = {
series: [{
type: 'graph',
coordinateSystem: 'geo',
links: migrationData.links,
data: migrationData.nodes,
edgeSymbol: ['none', 'arrow'],
lineStyle: {
width: 2,
curveness: 0.1
}
}]
};
Extended Applications of Geographic Coordinate Systems
ECharts' geographic coordinate systems are not limited to traditional maps and can be extended to other spatial scenarios:
- Indoor Maps: Display building interiors
// Custom floor plan
echarts.registerMap('floor-plan', {
"type": "FeatureCollection",
"features": [{
"type": "Feature",
"properties": {},
"geometry": {
"type": "Polygon",
"coordinates": [[
[0,0], [100,0], [100,50], [0,50], [0,0]
]]
}
}]
});
option = {
geo: {
map: 'floor-plan',
roam: true
}
};
- Virtual Scenes: Game or VR environments
// Create a game map coordinate system
option = {
grid3D: {
viewControl: {
autoRotate: true
}
},
geo3D: {
map: 'custom-3d-map',
shading: 'realistic',
light: {
main: {
intensity: 1.5
}
}
}
};
- Astronomical Data: Visualize celestial body positions
// Astronomical coordinate system configuration
option = {
geo: {
map: 'star-map',
projection: {
project: (point) => [
Math.cos(point[0]) * Math.cos(point[1]),
Math.sin(point[0]) * Math.cos(point[1]),
Math.sin(point[1])
],
unproject: (point) => [
Math.atan2(point[1], point[0]),
Math.asin(point[2])
]
}
}
};
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn