Optimization strategies for large data volumes
Big Data Optimization Strategies
When dealing with large datasets, ECharts can encounter performance bottlenecks, leading to rendering lag and interaction delays. With appropriate optimization strategies, performance can be significantly improved while maintaining visualization quality.
Data Sampling and Aggregation
When the number of raw data points is excessive, downsampling can reduce the data volume:
// Equidistant sampling function
function downsample(data, sampleSize) {
const sampled = [];
const step = Math.floor(data.length / sampleSize);
for (let i = 0; i < data.length; i += step) {
sampled.push(data[i]);
}
return sampled;
}
// Usage example
const rawData = [...]; // 100,000 data points
const displayData = downsample(rawData, 2000); // Sample down to 2,000 points
For time-series data, aggregation based on time windows can be used:
function aggregateByTime(data, timeField, valueField, interval) {
const aggregated = [];
let currentWindow = null;
let windowValues = [];
data.forEach(item => {
const time = Math.floor(item[timeField] / interval) * interval;
if (time !== currentWindow) {
if (windowValues.length > 0) {
aggregated.push({
[timeField]: currentWindow,
[valueField]: windowValues.reduce((a,b) => a + b, 0) / windowValues.length
});
}
currentWindow = time;
windowValues = [];
}
windowValues.push(item[valueField]);
});
return aggregated;
}
Chunked Loading and Dynamic Rendering
Implement batch loading and rendering for large datasets:
let currentChunk = 0;
const CHUNK_SIZE = 50000;
function loadDataChunk() {
fetch(`/big-data?offset=${currentChunk * CHUNK_SIZE}&limit=${CHUNK_SIZE}`)
.then(res => res.json())
.then(data => {
myChart.appendData({
seriesIndex: 0,
data: data
});
currentChunk++;
});
}
// Load more data on scroll
window.addEventListener('scroll', () => {
if (nearBottom()) {
loadDataChunk();
}
});
WebGL Accelerated Rendering
Enable ECharts' WebGL renderer to improve performance:
const chart = echarts.init(dom, null, {
renderer: 'webgl'
});
chart.setOption({
series: [{
type: 'scatter',
large: true,
largeThreshold: 2000,
progressive: 400,
progressiveThreshold: 3000,
// ...other configurations
}]
});
Key parameter explanations:
large: true
enables large-data modelargeThreshold
threshold for triggering large-data modeprogressive
chunk size for progressive renderingprogressiveThreshold
threshold for triggering progressive rendering
Visual Mapping Optimization
Reduce rendering load through visual channel encoding:
option = {
visualMap: {
type: 'continuous',
min: 0,
max: 100,
inRange: {
color: ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf', '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
},
calculable: true
},
series: [{
type: 'heatmap',
data: hugeData,
pointSize: 3,
blurSize: 2
}]
};
Data Preprocessing Strategies
Perform data preprocessing on the server side:
// Node.js preprocessing example
app.get('/preprocessed-data', (req, res) => {
const rawData = getHugeDataFromDB();
const processed = rawData
.filter(item => item.value > threshold) // Filtering
.map(item => ({
...item,
category: classify(item.value) // Classification
}))
.sort((a,b) => a.timestamp - b.timestamp); // Sorting
res.json({
meta: {
total: rawData.length,
filtered: processed.length
},
data: processed
});
});
Interaction Optimization Techniques
Optimize interaction experience with large datasets:
let debounceTimer;
myChart.on('dataZoom', _.debounce(function(params) {
const option = myChart.getOption();
const startValue = option.dataZoom[0].startValue;
const endValue = option.dataZoom[0].endValue;
// Get a subset of data after zooming
const filteredData = originalData.filter(
item => item.time >= startValue && item.time <= endValue
);
myChart.setOption({
series: [{
data: filteredData
}]
});
}, 300));
Memory Management Strategies
Best practices to avoid memory leaks:
// Properly dispose of chart instances
function destroyChart() {
if (myChart) {
myChart.dispose();
myChart = null;
}
}
// Regularly clear cached data
setInterval(() => {
if (myChart) {
myChart.clear();
}
}, 3600000); // Clear every hour
Performance Monitoring and Tuning
Code example for performance monitoring:
const stats = new Stats();
document.body.appendChild(stats.dom);
function animate() {
stats.begin();
// Chart operation code...
stats.end();
requestAnimationFrame(animate);
}
animate();
// Performance logging
myChart.on('rendered', function() {
const perfData = myChart.getModel().getPerformance();
console.log('Rendering performance:', {
renderTime: perfData.renderTime,
updateTime: perfData.updateTime
});
});
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn