Error tracking process
Code quality assurance and error tracking processes are indispensable in frontend development. High-quality code enhances the maintainability and stability of applications, while a robust error tracking mechanism enables quick identification and resolution of issues, minimizing the impact of production failures.
Core Practices for Code Quality Assurance
Ensuring code quality requires a multi-dimensional approach, including coding standards, static analysis, unit testing, and code reviews. Below are some specific practices:
Coding Standards and Style Guides
Establishing unified coding standards is the first step in ensuring code quality. For example, using ESLint with Prettier can automate code formatting:
// .eslintrc.js
module.exports = {
extends: ['eslint:recommended', 'plugin:prettier/recommended'],
rules: {
'no-console': 'warn',
'no-unused-vars': 'error'
}
};
Teams should customize standards based on project characteristics, such as:
- Component naming in PascalCase
- Variable naming in camelCase
- Constants in uppercase with underscores
- Prohibiting direct modification of props
Static Code Analysis
Static analysis tools can identify issues before code execution. TypeScript is an excellent type-checking tool:
interface User {
id: number;
name: string;
}
function getUserName(user: User): string {
return user.name;
}
// Compilation error
getUserName({ id: 1 }); // Missing 'name' property
Other commonly used tools include:
- ESLint: JavaScript/TypeScript syntax checking
- Stylelint: CSS/SCSS style checking
- SonarQube: Comprehensive code quality detection
Unit Testing and Coverage
A robust test suite effectively prevents regression issues. Example of testing a React component with Jest:
// Button.test.js
import { render, screen } from '@testing-library/react';
import Button from './Button';
test('renders button with correct text', () => {
render(<Button>Click me</Button>);
expect(screen.getByText(/click me/i)).toBeInTheDocument();
});
test('calls onClick when clicked', () => {
const handleClick = jest.fn();
render(<Button onClick={handleClick} />);
userEvent.click(screen.getByRole('button'));
expect(handleClick).toHaveBeenCalledTimes(1);
});
Recommended test coverage targets:
- Statement coverage >80%
- Branch coverage >70%
- Function coverage >90%
Code Review Process
Code Review (CR) is the final line of defense for quality assurance. Effective CR should:
- Limit each PR to under 400 lines of code.
- Focus on:
- Correctness of business logic
- Potential performance issues
- Edge case handling
- Code readability
- Use templates to ensure consistency:
## Change Description
[Describe the background and purpose of the changes]
## Test Validation
[List executed test cases]
## Impact Scope
[Specify affected functional modules]
Error Tracking Process Design
A robust error tracking system helps teams respond quickly to production issues. Key steps include:
Error Collection and Reporting
Frontend errors fall into several categories:
- JavaScript runtime errors
- Resource loading failures
- API request exceptions
- User behavior anomalies
Example of error collection using Sentry:
import * as Sentry from '@sentry/browser';
Sentry.init({
dsn: 'https://example@sentry.io/123',
release: '1.0.0',
environment: 'production'
});
// Manual error capture
try {
riskyOperation();
} catch (err) {
Sentry.captureException(err);
console.error(err);
}
// Global error handling
window.addEventListener('error', (event) => {
Sentry.captureException(event.error);
});
Error Classification and Prioritization
Establish error severity levels:
Level | Criteria | Response Time |
---|---|---|
P0 | Core functionality unavailable | <30 minutes |
P1 | Major functionality degraded | <4 hours |
P2 | Minor functionality issues | <24 hours |
P3 | Minor UI issues | Next iteration |
Error Diagnosis and Resolution
Typical diagnosis workflow:
-
Reproduce the issue:
- Collect user environment details (browser, OS, network, etc.)
- Check if specific users are affected
- Attempt reproduction in different environments
-
Analyze logs:
// Enhance error context Sentry.configureScope((scope) => { scope.setUser({ id: user.id }); scope.setTag('page', window.location.pathname); scope.setExtra('apiResponse', apiResponse); });
-
Validate fixes:
- Write regression tests
- Verify in staging environment
- Monitor post-fix error rates
Error Retrospectives and Prevention
Conduct regular error retrospectives:
- Root cause analysis (5 Whys method)
- Implement preventive measures:
- Add test cases
- Improve monitoring metrics
- Modify development processes
- Update error handling guidelines
Monitoring and Alerting Systems
Real-time monitoring is critical for error tracking. Key frontend metrics:
Performance Metrics
- FCP (First Contentful Paint)
- LCP (Largest Contentful Paint)
- CLS (Cumulative Layout Shift)
- TTI (Time to Interactive)
Business Metrics
- Key button click-through rates
- Page conversion rates
- API success rates
Example of Prometheus alert rules:
groups:
- name: frontend.rules
rules:
- alert: HighErrorRate
expr: rate(frontend_errors_total[5m]) > 0.1
for: 10m
labels:
severity: critical
annotations:
summary: "High error rate detected"
description: "Error rate is {{ $value }} per second"
CI/CD Pipeline Integration
Integrate quality checks into CI/CD pipelines:
# .github/workflows/ci.yml
name: CI Pipeline
on: [push, pull_request]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- run: npm install
- run: npm run lint
- run: npm test -- --coverage
- uses: codecov/codecov-action@v1
deploy:
needs: test
if: github.ref == 'refs/heads/main'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- run: npm install
- run: npm run build
- uses: actions/upload-artifact@v2
with:
name: production-build
path: build/
Key checkpoints:
- Code formatting validation
- Type checking
- Unit testing
- E2E testing
- Build artifact analysis
- Dependency security checks
Recommended Error Tracking Toolchain
Comprehensive quality assurance toolchain:
Category | Tool Options |
---|---|
Error Monitoring | Sentry, Bugsnag, Rollbar |
Performance Monitoring | Lighthouse, Web Vitals, New Relic |
Log Analysis | ELK, Datadog, Grafana Loki |
Testing Frameworks | Jest, Cypress, Playwright |
Continuous Integration | GitHub Actions, CircleCI, Jenkins |
Code Quality | SonarQube, CodeClimate, Coverity |
Frontend Error Handling Best Practices
Robust error handling strategies:
- Component-level error boundaries
class ErrorBoundary extends React.Component {
state = { hasError: false };
static getDerivedStateFromError() {
return { hasError: true };
}
componentDidCatch(error, info) {
Sentry.captureException(error, { extra: info });
}
render() {
if (this.state.hasError) {
return <FallbackUI />;
}
return this.props.children;
}
}
- API request retry mechanism
async function fetchWithRetry(url, options = {}, retries = 3) {
try {
const response = await fetch(url, options);
if (!response.ok) throw new Error(response.statusText);
return response.json();
} catch (err) {
if (retries <= 0) throw err;
await new Promise((r) => setTimeout(r, 1000 * (4 - retries)));
return fetchWithRetry(url, options, retries - 1);
}
}
- User behavior tracking
// Track critical actions
function trackAction(action, payload) {
analytics.track(action, payload);
if (payload.error) {
Sentry.addBreadcrumb({
category: action,
data: payload,
level: 'error'
});
}
}
Quality Metrics Framework
Establish quantifiable quality assessment:
- Defect density = Defect count / KLOC (thousand lines of code)
- Mean Time To Repair (MTTR)
- Production incident rate
- Test coverage trends
- Static analysis warnings
- Build success rate
Visualize metrics using dashboards:
// Grafana dashboard example
const dashboard = {
panels: [
{
title: 'Error Rate',
type: 'graph',
targets: [
{
expr: 'rate(frontend_errors_total[1h])',
legendFormat: 'Error Rate'
}
]
},
{
title: 'Test Coverage',
type: 'stat',
targets: [
{
expr: 'coverage_percentage',
format: 'percent'
}
]
}
]
};
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn
上一篇:查看提交历史(git log)
下一篇:质量评估指标