E-commerce website performance optimization case
Background and Problem Analysis
An e-commerce platform has a daily UV exceeding 1 million, with peak QPS reaching 5,000+ during major promotions. As the business grew, page load times deteriorated from 1.2 seconds to 4.5 seconds, and mobile first-screen rendering time exceeded 5 seconds, leading to a 23% drop in conversion rates. Lighthouse detection revealed the following key issues:
- Unoptimized image resources accounted for 78% of total volume
- Unbundled JavaScript packages reached 3.2MB
- Third-party scripts blocked the main thread for 1.8 seconds
- Lack of HTTP/2 caused severe request queuing
Static Resource Optimization
Image Lazy Loading and Format Selection
<!-- Native lazy loading implementation -->
<img src="placeholder.jpg" data-src="product.jpg" loading="lazy" alt="Product image">
<!-- WebP fallback solution -->
<picture>
<source srcset="image.webp" type="image/webp">
<source srcset="image.jpg" type="image/jpeg">
<img src="image.jpg" alt="Product display">
</picture>
Implementation results:
- First-screen image requests reduced from 28 to 6
- Average image size decreased from 450KB to 120KB
- AVIF-format banner images were 65% smaller than JPEG
Font File Optimization
/* Use font-display to avoid layout shifts */
@font-face {
font-family: 'CustomFont';
src: url('font.woff2') format('woff2');
font-display: swap;
}
Key measures:
- Converted TTF to WOFF2 format, reducing size by 40%
- Preloaded critical fonts:
<link rel="preload" href="font.woff2" as="font" crossorigin>
- Removed unused font weights, streamlining from 12 font files to 4
JavaScript Optimization
Code Splitting and On-Demand Loading
// Dynamic import for product detail module
const loadDetailModule = () => import('./productDetail.js');
// Route-level code splitting
const ProductPage = React.lazy(() => import('./ProductPage'));
Optimization results:
- Main bundle size reduced from 3.2MB to 1.4MB
- Split vendor bundle into independent packages (lodash, moment, etc.) using SplitChunksPlugin
- Eliminated 35% of unused code via Tree Shaking
Web Workers for Computational Tasks
// Main thread
const worker = new Worker('./searchWorker.js');
worker.postMessage({ query: 'smartphone' });
worker.onmessage = (e) => updateResults(e.data);
// worker.js
self.onmessage = (e) => {
const results = performHeavySearch(e.data.query);
self.postMessage(results);
};
Application scenarios:
- Product search filtering
- Price sorting algorithms
- Shopping cart total calculation
Network Layer Optimization
HTTP/2 and Server Push
Nginx configuration example:
server {
listen 443 ssl http2;
location / {
http2_push /static/css/main.css;
http2_push /static/js/runtime.js;
}
}
Implementation results:
- Resource load time reduced by 40%
- Fewer TCP connections via multiplexing
- Server-pushed critical CSS improved FCP by 300ms
CDN Strategy Optimization
# Cache rule examples
/*.js cache-control: public, max-age=31536000, immutable
/*.css cache-control: public, max-age=31536000
/*.avif cache-control: public, max-age=604800
Improvements:
- Edge node hit rate increased from 72% to 98%
- Dynamic API routes use stale-while-revalidate strategy
- Smart compression: Brotli for text, Zopfli for images
Rendering Performance Optimization
Virtual Scrolling for Long Lists
// React implementation example
<VirtualList
itemCount={10000}
itemSize={200}
renderItem={({index, style}) => (
<div style={style}>Product #{index}</div>
)}
/>
Performance comparison:
- Rendering 10,000 products: DOM nodes reduced from 100,000+ to 20
- Memory usage decreased by 85%
- Scroll frame rate improved from 8fps to 60fps
Optimizing CSS Selectors
/* Not recommended */
div.container ul li a.btn {}
/* Recommended */
.product-btn {}
Optimization principles:
- Avoid nested selectors exceeding 3 levels
- Reduce universal selector usage
- Apply BEM methodology for dynamic content
Monitoring and Continuous Optimization
Performance Metric Tracking
// Using Performance API
const [fcp, lcp] = await Promise.all([
performance.getEntriesByName('first-contentful-paint')[0],
performance.getEntriesByName('largest-contentful-paint')[0]
]);
// Send to monitoring system
tracker.send('PERF_METRICS', {
fcp: fcp.startTime,
lcp: lcp.startTime,
cls: getCLS()
});
Monitoring system:
- Real User Monitoring (RUM) covers 95% of traffic
- Synthetic monitoring runs Lighthouse tests hourly
- Performance budgets: JS<200KB, CSS<50KB, images<1MB
A/B Testing Validation
Pre- vs post-optimization data:
Metric | Before | After | Improvement |
---|---|---|---|
First-screen time | 4.5s | 1.8s | 60% |
Conversion rate | 1.2% | 1.8% | 50% |
Bounce rate | 38% | 22% | 42% |
Avg. session duration | 2m15s | 3m40s | 63% |
Future Optimization Directions
- Experimentally enable QUIC protocol to replace TCP
- Explore Edge Workers for edge logic
- Rewrite image processing modules with WASM
- Implement more granular resource prefetching strategies
- Optimize performance for 3G mobile networks
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn
上一篇:AI驱动的性能优化探索
下一篇:内容型网站加载优化实践