Integration of Responsive Design with TypeScript
Integration of Reactivity with TypeScript
Vue.js's reactivity system is one of its core features. Combined with TypeScript's type-checking capabilities, it can significantly improve code maintainability and development experience. Through type definitions and interface constraints, developers can more clearly describe data structures and component behavior, reducing runtime errors.
Reactivity Basics and Type Definitions
Vue 3's reactive
and ref
functions can be directly integrated with TypeScript's type system. When adding type annotations to reactive variables, it is recommended to use generic syntax:
import { ref, reactive } from 'vue'
// Primitive types use ref
const count = ref<number>(0) // Explicitly specify number type
// Object types use reactive
interface User {
id: number
name: string
age?: number // Optional property
}
const user = reactive<User>({
id: 1,
name: 'Alice'
})
When accessing these reactive variables, TypeScript automatically provides type hints and checks:
user.name.toLowerCase() // Correct
user.age?.toFixed(2) // Correctly handles optional property
count.value = 'hello' // Type error: cannot assign string to number
Type-Safe Component Props
In the Composition API, the defineProps
macro can achieve both runtime declaration and type inference:
<script setup lang="ts">
const props = defineProps<{
title: string
list: Array<{ id: number; text: string }>
optional?: boolean
}>()
// Full type hints when used
console.log(props.title.length)
</script>
For more complex scenarios, interface definitions can be separated:
interface Product {
sku: string
price: number
inventory: number
}
const props = defineProps<{
products: Product[]
maxVisible?: number
}>()
Type Practices for Composable Functions
When encapsulating custom hooks, special attention should be paid to the return value types:
import { ref, onMounted } from 'vue'
export function useFetch<T>(url: string) {
const data = ref<T | null>(null)
const error = ref<Error | null>(null)
onMounted(async () => {
try {
const response = await fetch(url)
data.value = await response.json()
} catch (err) {
error.value = err as Error
}
})
return { data, error }
}
When used, full type inference is available:
const { data, error } = useFetch<User[]>('/api/users')
// data is automatically inferred as Ref<User[] | null>
if (data.value) {
const firstUser = data.value[0] // User type
}
Typing Template Refs
Template refs require explicit element type specification via generics:
<script setup lang="ts">
import { ref } from 'vue'
const inputRef = ref<HTMLInputElement | null>(null)
function focusInput() {
inputRef.value?.focus() // Safe access
}
</script>
<template>
<input ref="inputRef" />
<button @click="focusInput">Focus</button>
</template>
For component refs, InstanceType
can be used to obtain the component instance type:
import MyModal from './MyModal.vue'
const modalRef = ref<InstanceType<typeof MyModal> | null>(null)
function openModal() {
modalRef.value?.show()
}
Type-Safe Event Handling
Custom events can be constrained using type literals:
const emit = defineEmits<{
(e: 'update', payload: number): void
(e: 'submit', payload: { values: string[] }): void
}>()
// Type checks are performed when emitting events
emit('update', 42) // Correct
emit('submit', { values: ['a', 'b'] }) // Correct
emit('update', 'text') // Error: Parameter type mismatch
State Management Integration
Pinia integrates seamlessly with TypeScript:
// stores/user.ts
import { defineStore } from 'pinia'
interface UserState {
list: User[]
current: User | null
}
export const useUserStore = defineStore('user', {
state: (): UserState => ({
list: [],
current: null
}),
actions: {
async fetchUsers() {
const res = await api.get<User[]>('/users')
this.list = res.data
}
}
})
Type safety is maintained when used in components:
const store = useUserStore()
store.list[0]?.name // Correctly infers User type
Advanced Type Patterns
Leveraging TypeScript's advanced features allows for more precise types:
type UnwrapRef<T> = T extends Ref<infer U> ? U : T
function useDebouncedRef<T>(value: T, delay = 200) {
const timeout = ref<NodeJS.Timeout>()
const debouncedValue = ref<T>(value)
watch(() => value, (newVal) => {
clearTimeout(timeout.value)
timeout.value = setTimeout(() => {
debouncedValue.value = newVal as UnwrapRef<T>
}, delay)
})
return debouncedValue
}
Type Extensions and Global Declarations
Extending global component type declarations:
// components.d.ts
declare module 'vue' {
export interface GlobalComponents {
RouterLink: typeof import('vue-router')['RouterLink']
BaseButton: typeof import('./components/BaseButton.vue')['default']
}
}
Typing custom directives:
// directives.d.ts
import { Directive } from 'vue'
declare module 'vue' {
interface ComponentCustomProperties {
vFocus: Directive<HTMLInputElement>
}
}
Type Testing and Validation
Using the asserts
keyword to create type assertion functions:
function assertIsDefined<T>(val: T): asserts val is NonNullable<T> {
if (val === undefined || val === null) {
throw new Error(`Expected defined but got ${val}`)
}
}
const maybeUser = ref<User | null>(null)
// After assertion, TypeScript narrows the type
assertIsDefined(maybeUser.value)
console.log(maybeUser.value.id) // Safe access
Performance and Type Optimization
For large reactive objects, use shallowRef
and markRaw
for performance optimization:
import { shallowRef, markRaw } from 'vue'
const heavyObject = markRaw({
/* Large immutable data */
})
const optimizedRef = shallowRef(heavyObject) // No deep reactivity
Type Utility Functions
Creating reactive transformation utility types:
type Reactive<T> = {
[K in keyof T]: T[K] extends object ? Reactive<T[K]> : Ref<T[K]>
}
function createReactive<T extends object>(obj: T): Reactive<T> {
return reactive(obj) as Reactive<T>
}
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn
上一篇:前端性能优化
下一篇:Vue Router4主要变化