Optimization of routing cache strategy
Route Caching Strategy Optimization
Route caching strategy is a key method to enhance the performance of Koa2 applications. A reasonable caching mechanism can reduce redundant computations and database queries, significantly lowering server load. The middleware architecture of Koa2 provides flexible space for caching implementation, allowing for designs that balance response speed and resource consumption.
Basic Principles of Caching Strategy
The core idea of route caching is to store frequently accessed and rarely changed data in memory or external caching systems. Common caching layers in Koa2 applications include:
- Full Response Caching: Stores the entire HTTP response
- Data Result Caching: Stores processed data objects from routes
- Fragment Caching: Stores partial fragments of template rendering
Memory caching is suitable for small to medium-sized applications, using modules like lru-cache
:
const LRU = require('lru-cache')
const cache = new LRU({
max: 500, // Maximum cache entries
maxAge: 1000 * 60 * 5 // 5-minute validity
})
Dynamic Route Caching Implementation
Dynamic routes require special handling for cache key generation. Consider an API route with parameters:
router.get('/api/users/:id', async (ctx) => {
const cacheKey = `user_${ctx.params.id}`
const cached = cache.get(cacheKey)
if (cached) {
ctx.body = cached
return
}
const user = await User.findById(ctx.params.id)
cache.set(cacheKey, user)
ctx.body = user
})
For routes with complex query parameters, serialize the parameters to generate cache keys:
function generateCacheKey(ctx) {
return `${ctx.path}?${querystring.stringify(ctx.query)}`
}
Cache Invalidation Strategy Design
Common cache invalidation mechanisms include:
- Time-based Expiration: Sets a fixed cache lifetime
- Active Clearing: Immediately clears related caches upon data changes
- Conditional Validation: Uses ETag or Last-Modified for conditional requests
Example of active clearing:
router.put('/api/users/:id', async (ctx) => {
const userId = ctx.params.id
await User.updateById(userId, ctx.request.body)
// Clear related caches
cache.del(`user_${userId}`)
cache.del('user_list') // Also clear list cache
ctx.body = { success: true }
})
Multi-Level Cache Architecture
A multi-level cache can further improve performance:
async function getWithCache(key, fetchFunc, ttl) {
// Level 1: Memory cache
let data = memoryCache.get(key)
if (data) return data
// Level 2: Redis cache
data = await redis.get(key)
if (data) {
memoryCache.set(key, data, ttl)
return data
}
// Fallback to source
data = await fetchFunc()
memoryCache.set(key, data, ttl)
await redis.setex(key, ttl * 2, data) // Longer Redis cache time
return data
}
Cache Performance Monitoring
Implementing cache hit rate monitoring helps optimize strategies:
const stats = {
hits: 0,
misses: 0
}
app.use(async (ctx, next) => {
await next()
if (ctx.state.fromCache) {
stats.hits++
} else {
stats.misses++
}
})
// Periodic statistics output
setInterval(() => {
const total = stats.hits + stats.misses
const ratio = total > 0 ? (stats.hits / total * 100).toFixed(2) : 0
console.log(`Cache hit rate: ${ratio}% (${stats.hits}/${total})`)
}, 60000)
Handling Special Scenarios
Pagination queries require special caching:
router.get('/api/posts', async (ctx) => {
const { page = 1, size = 10 } = ctx.query
const cacheKey = `posts_${page}_${size}`
const posts = await getWithCache(cacheKey, async () => {
return Post.find()
.skip((page - 1) * size)
.limit(size)
}, 300000) // 5-minute cache
ctx.body = posts
})
Cache cleanup for associated data updates:
router.post('/api/comments', async (ctx) => {
const comment = await Comment.create(ctx.request.body)
// Clear related post caches
cache.del(`post_${comment.postId}`)
cache.del(`post_${comment.postId}_comments`)
ctx.body = comment
})
Cache Security Considerations
Prevent cache breakdown and avalanche:
async function safeGet(key, fetchFunc, ttl) {
const value = cache.get(key)
if (value !== undefined) return value
// Use mutex lock to prevent cache breakdown
const lockKey = `${key}_lock`
if (cache.get(lockKey)) {
await new Promise(resolve => setTimeout(resolve, 100))
return safeGet(key, fetchFunc, ttl)
}
cache.set(lockKey, true, 1000) // 1-second lock
try {
const data = await fetchFunc()
cache.set(key, data, ttl)
return data
} finally {
cache.del(lockKey)
}
}
Practical Optimization Case
E-commerce product detail page caching solution:
router.get('/api/products/:id', async (ctx) => {
const productId = ctx.params.id
const cacheKey = `product_${productId}_v2` // Versioned cache key
const product = await getWithCache(cacheKey, async () => {
const [baseInfo, skus, reviews] = await Promise.all([
Product.findById(productId),
Sku.find({ productId }),
Review.find({ productId }).limit(5)
])
return {
...baseInfo.toObject(),
skus,
reviews,
updatedAt: Date.now() // Add timestamp
}
}, 1800000) // 30-minute cache
// Client-side cache validation
if (ctx.get('If-Modified-Since')) {
const lastModified = new Date(ctx.get('If-Modified-Since')).getTime()
if (product.updatedAt <= lastModified) {
ctx.status = 304
return
}
}
ctx.set('Last-Modified', new Date(product.updatedAt).toUTCString())
ctx.body = product
})
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn
上一篇:动态路由与通配符匹配
下一篇:自定义路由解析器开发