Large-scale data migration solution
Challenges and Requirements of Data Migration
Large-scale data migration in MongoDB environments faces numerous challenges, including data consistency, performance impact during migration, network bandwidth limitations, and compatibility issues between different versions or architectures. When the data volume reaches TB or even PB levels, traditional export/import methods often fail to meet business continuity requirements. For example, an e-commerce platform may need to migrate user behavior logs from a sharded cluster to a new time-series collection while ensuring the normal operation of analytical services and minimizing the impact on the production environment.
Migration Solution Selection
Logical Migration Tools
MongoDB's official mongodump
/mongorestore
combination is suitable for small to medium-scale data migration, with advantages in compatibility and support for BSON format compression. Typical use cases include data backup before cross-version upgrades:
// Export collection data (with gzip compression)
execSync(`mongodump --uri="mongodb://source:27017" --collection=products --gzip --out=/backup`);
// Restore to target cluster
execSync(`mongorestore --uri="mongodb://target:27017" --gzip /backup/mydb/products.bson.gz`);
Physical File Migration
For TB-level databases, directly copying data files (--dbpath
) is more efficient. This requires:
- Executing
fsyncLock
on the source database to lock writes - Using
rsync
for block-level incremental synchronization - Rebuilding indexes on the target database
# Freeze writes on the source database
mongo --eval "db.fsyncLock()"
# Sync data directory using rsync
rsync -avz /data/db/ backup-server:/migration/
# Automatically rebuild indexes when starting the target database
mongod --dbpath /migration/db --repair
Online Migration Strategies
Change Data Capture (CDC)
Using MongoDB Oplog for near-zero downtime migration, suitable for sharded cluster-to-sharded cluster scenarios. Key steps include:
- Initial full synchronization
- Continuously listening to and replaying the oplog
- Switching traffic after verifying data consistency
const { MongoClient } = require('mongodb');
const sourceClient = new MongoClient('mongodb://source:27017/?replicaSet=rs0');
const targetClient = new MongoClient('mongodb://target:27017');
async function syncOplog() {
await sourceClient.connect();
await targetClient.connect();
const oplog = sourceClient.db('local').collection('oplog.rs');
const cursor = oplog.find({ ts: { $gt: lastSyncedTimestamp } });
while (await cursor.hasNext()) {
const doc = await cursor.next();
await applyOperation(targetClient, doc);
saveCheckpoint(doc.ts);
}
}
function applyOperation(client, op) {
const ns = op.ns.split('.');
const coll = client.db(ns[0]).collection(ns[1]);
switch(op.op) {
case 'i': return coll.insertOne(op.o);
case 'u': return coll.updateOne(op.o2, op.o);
case 'd': return coll.deleteOne(op.o);
}
}
Special Handling for Sharded Clusters
Migrating sharded clusters requires additional considerations:
- Balancer state management
- Shard key compatibility validation
- Config server metadata synchronization
Best practice is to use the mongosync
tool for shard-aware migration:
mongosync \
--source-uri mongodb://src-shard1,src-shard2/srcdb \
--destination-uri mongodb://dst-shard1,dst-shard2/dstdb \
--cluster-to-cluster \
--include-collections orders,customers
Data Validation and Rollback
Validation Methods
- Document count comparison:
db.collection.countDocuments()
- Content validation: Use
$group
aggregation to calculate checksums - Sampling comparison: Randomly sample N records for full-field comparison
// Generate MD5 checksum for a collection
async function getChecksum(db, collName) {
const result = await db.collection(collName).aggregate([
{ $sort: { _id: 1 } },
{ $project: { hash: { $md5: { $concat: Object.keys(schema).map(k => `$${k}`) } } } },
{ $group: { _id: null, total: { $sum: "$hash" } } }
]).toArray();
return result[0].total;
}
Rollback Mechanism Design
- Retain pre-migration snapshots for at least 7 days
- Log migration timestamps
- Prepare reverse synchronization scripts
Performance Optimization Techniques
- Batch writes: Set
--numInsertionWorkers
parameter for parallel loading - Network compression: Enable
--gzip
and--ssl
to reduce transfer volume - Resource isolation: Use
--rateLimit
to control migration traffic - Index strategy: Migrate data first, then create indexes
# Enable 4 parallel threads for data restoration
mongorestore --numInsertionWorkers 4 --gzip /backup
# Limit transfer bandwidth to 100MB/s
mongodump --rateLimit 100000000
Cloud Migration Practices
AWS DMS and MongoDB Atlas Live Migration configurations:
# AWS DMS task definition example
TaskSettings:
TargetMetadata:
ParallelLoadThreads: 8
LOBChunkSize: 64
FullLoadSettings:
CommitRate: 50000
Atlas migration workflow:
- Create a migration project in the Atlas console
- Configure network peering
- Set continuous synchronization thresholds
- Trigger the final cutover window
Exception Handling Scenarios
- Network interruption: Implement checkpoint restart mechanism
- Schema conflicts: Use
--ignoreBlanks
to skip missing fields - Version differences: Avoid index compatibility issues with
--noIndexRestore
- Insufficient space: Pre-allocate data files with
mongod --quotaFiles
// Typical retry logic for migration errors
async function safeMigrate() {
let retries = 3;
while(retries--) {
try {
await migrateBatch();
break;
} catch (err) {
if (err.code === 'NetworkError') {
await sleep(5000);
continue;
}
throw err;
}
}
}
本站部分内容来自互联网,一切版权均归源网站或源作者所有。
如果侵犯了你的权益请来信告知我们删除。邮箱:cc@cccx.cn
上一篇:高并发写入的优化策略
下一篇:生产环境部署建议